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HAMILTON'S PRINCIPLE AND CERTAIN PROBLEMS OF DYNAMICS OF PERFECT FLUID* 

A.G. PETROV 

From the equation of motion of perfect incompressible homogeneous fluid are derived 
the Hamilton variational equation and the Lagrange function for some vortex flowsof 
fluid in a multiply connected region , of arbitrary potential flow in boundless re- 
gion in the presence of singularities inside the stream , of flow over a wing with 
circulation in unstable stream whose velocity is an arbitrary meromorphic function. 
The Lagrange function is defined in explicit form as a functional of the boundary 
of the fluid and its normal velocity, which enables us to solve some problems of 
dynamics of certain bodies mfluid, of vortex flows and flows inthepresence of a 
free boundary by methods on analytic mechanics. 

1. From the history of the problem. Not withstanding the efforts of many mathe- 
maticians, the problem of obtaining the equations of motion in a potential flow of a perfect 
incompressible fluid remained unsolved up to 1867. SuddenlyThomson and Tait /l/ found a 
simple solution of this problem, applying to the fluid the Hamilton principle 

idt 1 pbdS=idtSL t, ,362 

8n (tJ = 6n (t,;‘= 0 

(1.1) 

where 6n is the virtual displacement of the boundary of solid body &, compatible with 
kinematic conditions, and the integral of C% represents the work of the force of pressure n 
of fluid on the displacement Sn. 

The Lagrange function L, as well as the motions of the solid body, is equal to the dif- 
ference of the fluid kinetic energy T and the potential energy of the system 

L=T-II (1.2) 

A system of differential equation follows from (l.l), which is satisfied by N,generalized 
coordinates of the body (in the general case N = G for a solid body) 

d dL dL 
-_-_++-_ 

dt -3qi aqi Qiv tQ&i= p&t dS 
i-1 

(1.3) 

Two problems of dynamics can be solved by using Eqs.Cl.3): determination of reactions Qi 

acting on the body for a known law of motion qi(t), and the definition of the law of motion 
qi(t) for specified generalized forces Qi. 

In 1869 Kirchhoff provided a convincing proof of this approach /2/. He introduced the 
Lagrangian displacement of a particle of fluid 6x induced by the small perturbation which is 
determined by the variation &7,(t). At the same time he drew the attention to the fact that for 
6qi(t,) = 6qi(t,) = Olt is not possible to assume the Lagrangian displacement of a particle at 
the instant of time t, (6X (ta) # 0). Thus, unlike the points of solid body, the position of 

particles of fluid is not defined by the instantaneous values of coordinates of a body qi(t). 
Hence the Kirchhoff investigation essentially complements theThomson and Tait idea. 

Kirchhoff gave a very simple derivation of the variational equation (1.1) from the Euler 
equation 

dv 
fJ;Tt= - VP + pvu, vv=o (1.4) 

He transformed the Lagrangian variation of specific energy and, taking advantage of that 

the div& = 0, and also of the equation of motion (1.4), obtained 

PVZ 6-z-== -$(@x)+ div[(p-@)6x] (1.5) 
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By integrating Eq.(1.5) over the region n and over the time, instead of (1.1) we obtain 

the following equation: 

By virtue of 
the surface 

ir 

S W(T- n)=z+~dt s pbndS, I=Spv6xdrf’ 1, (1.6) 
II II an P 

potential properties of v = V @ integral I reduces to the integral over 

where 62, is the projection of vector 6x onthenonnal n. The boundary 139 of the body 

and fluid consists of the same particles of fluid (see the Lagrange theorem in /3/J. Hence 
on it the condition 6x,, = 6n is satisfied and by virtue of conditions (1.1) 6x,, (t2) = 0. From 
this follows that I= 0, and the variational equation (1.1) is obtained. In 1871 Boltzmann 

drew the attention to that in the multiply connected region it is generally not possible to 
apply the Gauss theorem in (1.7). It is necessary to introduce mental partitions n,, n,,..., 
IIM_l, that will transform M-connected region into simply connected one (Fig.1). Then the 
integral (1.6) is written in the form 

Z = S div (@6x) dz 11. = S p(DsZ, dS 
$2 acl (1.7) 

(1.8) 

Fig.1 

Here rk are the discontinuities of.the non-single 
valued potential 0 on the partition or the circula- 
tion velocity on respective contours. 

By virtue of 6x (t&f0 the integral (1.8) is 
generally nonzero, and consequently, the variational 
equation (1.1) and system (1.3) are not true. 

In 1873Thomsonsuggested new equations for the 
potential flow in the multiply connected region /4/. 
He considered re as pulses and the respective flow 
rate yk of fluid through the partition IIp as the 
conjugate velocities of variation of respectivecyclic 
coordinates. Using the method which was accepted in 
mechanics as the method of Routh of ignoring cyclic 
coordinates, Thomson obtained the form of Lagrange 
function in the variational equation (1.1) 

(1.9) 

The proof of validity of Lagrange equations (1.3), (1.9) was given by Steklov /5/ and 
independently by Brian /6/. Recently /7/ a proof was given which is valid for the deformed 
body in a fluid. 

Using the idea of Thomson and Tait, Kirchhoff obtained symmetric equation for the motion 
of body in a fluid, which are similar to the Euler equations for the motion of solid body in 
void. The study of the problem of integration of Kirchhoff's equations was commensed in part- 
icular cases by Thomson, Tait and Kirchhoff, and were completed by the investigation of 
Liapunov, Steklov, and Chaplygin. 

A considerable interest for application is the work of Zhukovskii /8/, who opened the 
road for investigation of the problem of motion of a solid body with liquid filling /g-12/. 
Another practically important direction is bound with the work of Sedov /13/ on the dynamic 
theory of the wing in an unsteady stream with circulation. The basic advantage of his form- 
ulas for the force and moment acting on the wing is that the integration contour can be de- 
formed. The calculation of integrals is reduced to the determination of residues near the 
singular points of integrand functions. 

2. Formulations of the Hamilton variational equation and of the Lagrange 
function. The flow of perfect incompressible homogeneous fluidwhose mass forces have a 
potential U, are considered. The region of flow gis bounded from the outside or the inside 
by the surface BQ. The surface an may consist of several connected parts. The position 
of surface 89 or its part is defined by a finite or a denumerable number of parametersgl,q,,... 
(by generalized coordinates). The aim of the present investigation is the derivation of a 
system of ordinary differential equation (1.3) for the generalized coordinatesoftheboundary. 
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Below, the Hamiltonian principle (1.1) is derived from Euler equations (1.4) by the 
methodofKirchhoff for the following three cases: 

LO. The fluid flow region 9, is a multiply connected bounded by surface 8R whose posi- 
tion and deformation are defined by the generalized comdinates Q,,P~,_... Three variants are 
possible: a) the flow is potential, and the potential is multiple-valued function, b) the 
plane problem, the flow has a constant vortex; c) axisymmetric problem, the flow has a vort- 
icity whose intensity decreases proportionally to the distance from the axis of rotation. 

In all three variants the variational equation (I.11 holds and the Lagrange function is 

(2.1) 

where v,is the velocity of field of the imaginary incompressible medium fixed to the boundary 
88. For the cavity in a solid body v&is the velocity field of the solid body points. For a 
potential flow formula (2.1) becomes Thomson formula (1.9). Generally formula (2.1) agrees 
with the resufts of /14/, 

20. The body moves in a given potential flow of fluid vo(t,x) and creates by that new. 
potential velocity field v satisfying equations (1.4) and the kinematic conditions at the 
boundary of the body 8% The potential. velocities v and vg are single valued functions, and 
at infinity 1 v - v. I approach zero. The stream v,(t, x) can be created by the motion of 
external bodies with surface SO, as well as by singularities of the type of multipoles of 
arbitrary order. 

The position and the deformation of bodies 8V are defined by the generalized coordin- 
ates and the motion of the boundary of So is given. The Lagrangian function L in (1.1) is 
then defined by formula 

L=s$(v-v#d~- pod% 
P s 

where po(t,x) is the pressureinthe stream v0 (t,x), and 8, V are the regions occupied by 
fluid and the body respectively. 

The result, when the stream v. is induced by the motion of the surface, was obtained in 
/15/ by the indentical transformation of kinetic energy of the fluid appearingintheintegral. 
of action of variational equation of Thomson and Tait (1.1). For a small body the Lagrangian 
function is of the form /IS/ 

L x T (x0 - vo ft, x)) - pa (t. x) v (2.3) 

where x is the vector of coordinates of the geometric center of the body, 
30. Let in the canplex plane z the velocity of the inhomogeneous stream and the stream 

function are determined by the formulas 

vO== &V&z, q0 = ImW, 

where dW& is an arbitrary meromorphic function of the complex variable z whose coeffic- 
ients are generally dependent on time t. The introduced into this stream simply connected 
contour &I who bounds from outside the region I) free from singular points 0.f function 

dW&. 
The motion of contour NJ is specified by the conformal mapping 2 (t, c} the exterior 

of unit circle { c 1 >I on the exterior of contour aia 

2 (t, 5) - zo=ao(t)t;+a,(t)lSt-a,(tKt’+.-. 

The area of region Dis assumed equal to constant quantity ma which by the theorem of 
areas is expressed by condition a,,% = a2 + tar I” + 2 J ~8 la j- . . . 

The motion of contour aQ creates a perturbed potential velocity field v = vg + V, f vr 
which satisfies the conditions at the boundary of body D. 

(Vo -I- v*fnIC3n=%U Vrnla,=O 

Circulation V. is zero, and Uris equal f. At infinity both VB and VP approach zero. 
The pressures p and p. satisfy Eqs.(l.4). Then the Lagrange function Lin (1.11 is of 

the form /16/ 

L= 
% 

+V$dr - pod7 “f- J$ In + 
A=* 

(2.4) 
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The variational equation (1.1) with function (2.4) conform to general formulas of Sedov 
for the force and moment acting on contour an /13/ 

3. Case 19 For the derivation of Lagrange function by formula (2.1) it is necessary 
first to define the velocity vector v,/14/. 

Let gl, q2 . . . be the generalized coordinates defining the position of boundary as2 inspace. 
The boundary CiQ consist of Mconnected parts aP,, aQ,... (Fig-l). Let some vector function 

X 
x = X (qi, x,), det [ aX&‘z, 11 = 1 

map region 51, onto region Q(x, E 62,, r~S-2)50 that elementary volume is maintained at each 

point. The time functions qi(t) specify the motion of boundary asl, while function X the 

trajectories of points x~ 8, that correspond to X* E Q,. 
It is thus possible to consider x*as the Lagrangian coordinates of particles of some 

imaginary incompressible medium "fastened" with the boundary an. The velocity v,and the 

Lagrangian displacement 6,x of particles of that medium are determined by formulas 

(3.1) 

On the boundary a!Q are satisfied the same conditions as for velocity v and the 

Lagrangian displacements 6x of particles of fluid 

vn=v*n=v*, 6xn=6*xn=6n 

The simplest case is when the mapping function and velocity vt are written in explicit 
form, it is an affine transformation of region g* into Q with determinant unity. Generally 
the affine transformation has 8 degrees of freedom, 6 for the solid body, and 4 for the map- 
ping of plane region. ' 

To obtain variational principle (1.1) it is necessary to express 1 in (1.6) in terms 
of functional variation. For the potential and vortex motion the respective results have the 
form 

I (tz) = 5 a* y TkYk, (3.2) 

1, k-1 
Yk = s g(v--v,)ndS 

nk 

(3.3) 

From this and (1.6) follow the formulas for the Laplace function 

M-1 

L=T--n- 2 rk~k-+S (J,-‘#a-$M+$h?.)dr (3.4) 
k-1 a 

where 20 is the intensity of vorticity rotv = 2wk for plane flow, rotv = 2oyk axisymmetric 
flow, k is the unit vector,y is the distance from the axis of symmetry,+ and $* are stream 
functions for the velocity fields v, and v,,~M,$M+ are the values of stream functions ~3s~. 

The equivalence of formulas (3.4) and (2.1) is proved using the transformations 

n 
--++)dT=ip(&(v-v.Jv+U)dr 

The formula (2.1) for the Lagrange function has thus be obtained, Q.E.D. 

4. Case 2O. The direct derivation of formula (2.2) for the Lagrange function may be 
obtained from the similar to (1.5) relation 

G[div($ pV)] - $(div PCPSX) +div[(p-ppo)6x] (4.1) 

v=v - v. = grad cp 

We inwgrated formula (4.1) over region R'bounded by the surface aa' consisting of the 
body boundary aR, fairly withdrawn surface S, and small spheres Sk surrounding singular 
points Xk 
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By virtue of &xn = 6n and conditions (1.1) the last integral is zero. 
The residual term Rin (4.2) is expressed in terms of integral over surfaces S 

R---6 +-cpvnas +-g \ pcp&xn dS 
B 

+ 1 (p - po) 6xn dS, 
S 

S=S,Ur,& 
B 

14.3) 

For any closed surface S,moving with the fluid , the expression (4.3) for R is identical- 
ly zero. Then from (4.2) we obtain the variational equation (1.1) with Lagrange function 
(2.2). 

To prove that REO we have to use formulas of differentiation and variation of the 
stream of vector over the closed surface moving with the fluid particles /10,17/ 

where the symbols b 
between which there 

Expressing the 

bSAndS=S(aA+bxdivA+rot(Ax6x))ndS 
S s 

and a denote, respectively, the Lagrangian and the Euler's variations, 
exists the relation 

b = a + (6~. V) (4.5) 

first two integrals in (4.3) in terms of formulas (4.4) and the last one 
in terms of Cauchy-Lagrange integral, we obtain 

R= pfndd, 
s 

r=-$a(.+ fax div(pV)+ (4.6) 
S 

The partial derivative asdat is found from the relation dihidt = bv which with the help of (4.5) 
can be written in the form 

asq’at = rot (V x 6%) + av (4.7) 

If one takes into account that for incompressible fluid divV=O, div6x=O, and after 

some transformation, the integrand of (4.6) can be reduced to the form 

f = l12'p(iv - Vpvacp - 11% rot (cpv x fix) 

The integral of the vector stream rot(cpV x6xX) over the closed surface is identically zero, 

hence 
R= 

c +(q dV - Vacp) n dS 
B 

Functions (p, V, acp, dV are defined everywhere outside the body, the product cpdV,Vi$ decrease 

at infinity at least as rW3, and besides div (t@V - Vaq)sU. From this it follows by the Gauss- 

Ostrogradskii theorem that R 3 0. 

5. Case 3O. In the presence of circulation r the potential 'p is nonhomogeneous. Hence 
it is necessary in integrating over the plane region and time t the equation (4.1) to apply 

the generalized theorem of Gauss- Ostrogradskii with allowance for the partition n. In that 

case instead of Eq.(4.2) one can obtain 

(,,,\ .$?ddz= (dt(\ (p--pPo)6ndS+G)+pr 6xn dl (5.1) 

I, a i, JQ 

The residual term G is found similarly to (4.4) 

(5.2) 
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Vector 6x by virtue of the equation of inccmpressibility can be expressed in terms of 
scalar function g using formula bx =rotkg, where k is a unit vector normal to the plane. 
Equation (4.7) has the integral 

dgldt = a* (5.3) 

where Ip is the stream function (v= rotk@. It follows from (5.3) that g is a bounded function. 
If one takes into account the Cauchy-Lagrange integral, formulas (5.3) and the relation 

Gxndl = dg, then from (5.2) we can obtain that 

G= 1 p(Gdg-aqdtp) 
c 

(5.4) 

Using the properties of decrease of functionsv, && mat infinity, it is possibletoshow 
that when contour cm recedes at infinity and, contours ck contract to singular points zk, for 
the integrals (5.1) and (5.4) are obtained the following limit expressions /16/: 

Passing to the respective limit in (5.1) we obtain for the Lagrange function Eqs. (1.1) 
the final form (2.4). 

The Lagrange function in a stream with constantvorticity can be similarly obtainedfrom 
the following equation for variations /17/: 

6. Examples of Dynamical systems. When the Lagrange function L((P~.Q~‘) is computed 
in the explicit form, the problem of hydrodynamic reduces to the conventional system of 
Lagrangian dynamics, which enables us to produce the complete mathematical analysis of non- 
linear equations using methods of analytic mechanics. This method was approved in investiga- 
tions of the general problem of motion of solid body with fluid /lo-12/, and has shown a 
high effectiveness, particularly in the analysis of stability of steady motions with allow- 
ance for capillary effects. 

Formulas (2.1)- (2.4) widen the class of hydrodynamic SystemsthatreducetoLagrangian 
dynamics. 

The problem of motion of body in inhomogeneous stream and the hydrodynamic interaction 
of bodies was investigated on the basis of (2.21, and (2.31 in /15/. General equations of 
motion were obtained for a solid as well as for deformable bodies (e.g., the bubble /18/j in 
a inhomogeneous stream. And the equations are no more complex than Kirchhoff's/2/ and are 
well suited for practical computations. The instability of steady motion of solid in an in- 
homogeneousstreamis proved in /19/. The prospect is open for investigation by the direct 
Liapunov method of the problem of stability of steady motion of a bubble or drop /14,20/. 

The combination of formulas (2.1) and (2.4) enables us to write the ordinary differential 
equations that determine the dynamics of vortex distribution in a given stream. Thisapproach 
was used for constructing model of the Golfstream ring /21/. 

The variational formulation of the problems of hydrodynamics provides the possibility 
to apply straight method of determining the free boundary or the boundary separatingthevortex 
and potential flows /14,20,21/. 

The authors thank L.I. Sedov for his interest in this paper and V.V. Rumiantsev for 
discussing the results. 

1. 

2. 

3. 

4. 

REFERENCES 

THOMSON W. end TAIT P., Treatise of Natural Philosophy. Vol.1, Oxford, 1867. 
KIRCHHOFF G., Mechanics, MOSCOW, Izd. Akad. Nauk, 1962. 
PRANDTL L. and TITJENS O., Hydro- and Aeromechanics. Vol.1. Moscow-Leningrad, GOSTEKHIZDAT 

1933. 
, 

THOMSON W., On the motion of rigid solids in a liquid circulating irrotationally through 
perforations in them or a fixed solid. Philos. Mag. Vo1.45, Proc. Roy. Sot., Edinburgh 
vo1.7, 1812. 



36 

5. STEKLOV V.A., On the motion of solid body in fluid. Khar'kov, Tipogr. Darre, 1893. 
6. BRYAN A., Hydrodynamical Proof of the Equation of Motion of a Perforated Solid. Phil. Mag. 

May, Vo1.35, 1893. 
7. VOINOV O.V., On the derivation of equations of motion of solid body in Fluid, Vestn. MGU, 

Matem. Mekhan., No.3, 1970. 
8. JOUKOVSKII N-E., On the motion of solid body having cavities filled by homogeneous fluid. 

Coll. Works, Vol.1, Moscow- Leningrad 1948, GOSTEKHIZDAT, 1948. 
9. OKHOTSIMSKII D-E., On the theory of motion of a body with cavities partly filled with a 

liquid, PMM Vo1.20, No.1, 1956. 
10. MOISEEV N.N. and RUMIANTSEV V.V., Dynamics of body with cavities containing fluid. Moscow, 

NAUKA, 1965. 
11. RUMIANTSEV V.V., On the motion and stability of a solid body with a rotor and fluids hav- 

ing surface tension. In: Introduction to Dynamics of Body with fluid in condition of 
weightlessness. Moscow, VTs Akad.Nauk SSSR, 1968. 

12. SAMSONOV V.A., On certain problems of minimum in the theory of stability of motion of a 
body with fluid. In: Introduction in the Dynamics of body with fluid, under conditions 
of weightlessness. Moscow, VTs Akad,Nauk SSSR, 1968. 

13. SEDOV L.I., Plane Problems of Hydrodynamics and Aerodynamics. Moscow, NAUKA, 1966. 
14. PETROV A.G., Lagrange function for vortex flows and dynamics of deformed drops. PMM Vol. 

41, No.1, 1977. 
15. VOINOV V-V., VOINOV O.V., -and PETROV A.G., Hydrodynamic Interaction between bodies and 

theirmotionin inhomogeneous streams. PMM, Vo1.37, No.4, 1973. 
16. PETROV A-G., The variational Hamilton principle for the motion of a contour of variedform 

in vortex plane parallel stream. In: The Dynamics of continuous medium. Vyp. 52, Novo- 
sibirsk. Inst. Gidrodyn. SO Akad. Nauk SSSR, 1981. 

17. SEDOV L.I., Mechanics of Continuous Medium. Vol.1, Wolters-Noordhoff, 1971. 
18. VOINOV O.V. and PETROV A.G., The Lagrange function of a gas bubble in an inhomogeneous 

stream. Dokl. Akad. Nauk SSSR Vo1.210, N0.5, 1973. 
19. VOINOV 0-V. and PETROV A.G., On stability of a small body in an inhomogeneous stream. 

Dokl. Akad. Nauk SSSR, Vo1.237, No.6, 1977. 
20. LIEHOMANOV N.I. and PETROV A-G., The flow of plane parallel stream over a gas cavity. Izv. 

Akad. Nauk SSSR, MEhG No.5, 1975. 
21. PETROV A.G., On the motion of Golfstream rings. OEEANOVBDENIE, Vo1.20, No.6, 1980. 

Translated by J.J.D. 


